Dynamics of self-propelled particles passing a bottleneck
نویسندگان
چکیده
منابع مشابه
The collective dynamics of self - propelled particles
We have proposed a method for the dynamic simulation of a collection of self-propelled particles in a viscous Newtonian fluid. We restrict attention to particles whose size and velocity are small enough that the fluid motion is in the creeping flow regime. We have proposed a simple model for a self-propelled particle, and extended the Stokesian Dynamics method to conduct dynamic simulations of ...
متن کاملCollective dynamics of self-propelled particles with variable speed.
Understanding the organization of collective motion in biological systems is an ongoing challenge. In this paper we consider a minimal model of self-propelled particles with variable speed. Inspired by experimental data from schooling fish, we introduce a power-law dependency of the speed of each particle on the degree of polarization order in its neighborhood. We derive analytically a coarse-g...
متن کاملThe nonequilibrium glassy dynamics of self-propelled particles.
We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in th...
متن کاملSpontaneously ordered motion of self-propelled particles
We study a biologically inspired, inherently non-equilibrium model consisting of self-propelled particles. In the model, particles move on a plane with a velocity of constant magnitude; they locally interact with their neighbours by choosing at each timestep a velocity direction equal to the average direction of their neighbours. Thus, in the limit of vanishing velocities the model becomes anal...
متن کاملGravitaxis of asymmetric self-propelled colloidal particles.
Many motile microorganisms adjust their swimming motion relative to the gravitational field and thus counteract sedimentation to the ground. This gravitactic behaviour is often the result of an inhomogeneous mass distribution, which aligns the microorganism similar to a buoy. However, it has been suggested that gravitaxis can also result from a geometric fore-rear asymmetry, typical for many se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2020
ISSN: 1367-2630
DOI: 10.1088/1367-2630/abcc1d